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Summary 
 
To deliver as high a percentage of per-processor peak performance as is practical on the 
hierarchical memory architectures on which most SciDAC scientists make their production runs, 
the Terascale Optimal PDE Simulations (TOPS) Center is researching innovative strategies for 
tuning the kernels that arise most often in solving sparse linear systems from DOE simulations. 
 
TOPS is automatically tuning performance of 
sparse matrix kernels that dominate many 
scientific and engineering applications. Given 
a sparse matrix (i.e., its sparsity pattern and 
other properties like symmetry), the operation 
to be performed (e.g., sparse matrix vector 
multiply or SpMV, triangular solve) and the 
processor architecture, it is possible to build a 
custom data structure and implementation 
that can substantially increase performance. 
The speedups from uniprocessor tuning 
depend strongly on the matrix, the operation 
to be performed and architecture, but can 
range up to a factor of seven or more for 
sparse-matrix-multiple-vector multiplication. 
Composite operations, like AT*A*x, are also 
amenable to high speedups when performed 
atomically. 
 
Straightforward implementations of standard 
operations on large data objects can run 
slowly on contemporary hierarchical memory 
processors, where the main memory latency 
is 100 or more times greater than the 
processor clock period.  For operations with 
no cache locality whatsoever, this bounds 
performance at 1% of peak or less. 
 
The Basic Linear Algebra Subroutines 
(BLAS) invented for dense linear algebraic 
operations are universally used, because well-
tuned BLAS break the work into cache-sized 
blocks, augmenting reuse,  and often achieve 

80% or more of peak. Furthermore, the BLAS 
can be tuned automatically using packages 
like ATLAS or PHiPAC. The FFTW package 
takes a similar approach for the FFT. 
 
Local discretizations (e.g., finite elements) of 
partial differential equations (PDEs) typically 
give rise to sparse linear systems that are 
much less amenable than dense systems to 
obtaining a high percentage of peak.  SpMV 
is the most important kernel in iterative 
methods for these PDEs. Its memory traffic 
pattern is also analogous to evaluating a 
differential operator on a grid function, a grid 
transfer operation in a multilevel method, or 
accumulating the right-hand side in a 
triangular solve: each matrix element is used 
only once, magnifying the importance of 
tuning these operations.  
 
Multicomponent systems of PDEs, when 
ordered most rapidly by unknowns at a 
gridpoint, have a sparse structure of dense 
blocks. Furthermore, density increases 
through fill-in in incomplete factors often 
employed as preconditioners, or in exact LU 
factorizations. By exploiting effects like these 
through hand-tuning, researchers using the 
now TOPS-supported PETSc software were 
able to obtain up to 25% of peak uniprocessor 
performance on hierarchical memory 
machines in an implicit aerodynamics 
computation en route to a Bell Prize in 1999, 
for a code whose original uniprocessor 



performance was less than 5%. We are 
automating such optimizations in TOPS. 
 
Whereas matrices arising in PDE simulations 
are sparse, vectors representing gridfunctions 
are dense. Some linear algebraic methods 
operate on multiple vector columns 
simultaneously, providing another source of 
density to exploit. Historically, block iterative 
methods of this type have not enjoyed great 
favor. However, tests performed by TOPS 
researchers show improved computation rates 
for block algorithms due to their superior 
memory locality�an effect that may 
overcome convergence rate disadvantages in 
many problem-architecture combinations. 
 
TOPS researchers have identified six 
common kernels arising in sparse linear 
algebraic computations and have subjected 
them to exhaustive performance tuning on 
seven commercially important uniprocessors 
(including the Power3 and Power4 systems at 
NERSC and ORNL�s CCS).   
 
R. Vuduc, in work that was honored with 
�Best Student Paper� at an ICS'02 workshop, 
has also done a theoretical performance 
analysis for one optimization technique, 
register blocking, that provides an upper 
performance bound for this operation on a 
given matrix and architecture obtained from 
modeling the memory traffic alone. On a test 
suite of 44 matrices from applications and 
four architectures, we are within 20% of 
optimal for many matrices, especially those 
from finite element modeling. (We use PAPI 
data to validate the predictions of our model.) 
On non-FEM matrices, speedups of a factor 
of two are still possible. In addition to register 
blocking, we use �switch-to-dense�, which 
recognizes that triangular matrices resulting 
from (I)LU factorizations are often quite 
dense in their trailing submatrix, so that a 
dense BLAS implementation can be used 
there. Similar speedups are obtained, as well 

as agreements between actual performance 
and memory-based performance modeling. 
Furthermore, on the most recent Intel Itanium 
2 architecture, we can achieve up to 30% of 
peak machine speed on SpMV for matrices 
from FEM and protein modeling codes, and 
speedups of up to two on the challenging web 
connectivity matrix used by the Google 
search engine. This demonstrates the 
relevance of our work on future architectures 
and on current and new applications alike. 

 
Figure 1. SpMV register blocking performance, 900 
MHz Itanium 2 for a dense matrix stored in sparse 
format. Block sizes r× c are shown up to 12×12. A 
judicious choice of block size (here, 4×2) leads to 1.2 
Gflop/s performance, or 33% of peak speed�a 4x 
increase over the conventional (1×1) code. This 
picture varies dramatically across platforms and 
matrices. 

TOPS researchers are also developing 
automatically tuned implementations of the 
smoother component of multigrid, obtaining 
up to a factor of three over the simple 3-loop 
implementation of a natural ordering 
smoother.   

The TOPS project webpage may be found at 
http://www.tops-scidac.org. 
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